
ASIGRA Inc.

AsigraEncModule Encryption Library
(Software Version 1.0)

FIPS 140-2 Non-Proprietary

Security Policy

May 18, 2016 Page 2 of 15

Table of Contents
1. Introduction..3

1.1 Overview...3
1.2 Purpose..3
1.3 Security level ..3

2. Cryptographic Module Specification...4
2.1 Software Environment...4
2.3 Master component list...4
2.4 Module Interfaces..5
2.5 Module Block Diagram...6
2.6 Approved mode of operation...7

3. Roles, Services and Authentication..7
3.1 Roles and Services...7
3.2 Authentication...7
3.3 Services...7

4. Finite State Model..9
4.1 State Description...9
4.2 State Transition Description..10
4.3 Cryptographic function input, output and control...12

5. Physical Security..13
6. Cryptographic Key Management...13

6.1 Key Generation..13
6.2 Key Entry and Output..13
6.3 Key Storage...13

7. Electromagnetic interference / electromagnetic compatibility..14
8. Self-Tests..14

8.1 Known answer tests...14
8.2 Integrity test...14

9. Mitigation of other attacks...15
10. References..15

May 18, 2016 Page 3 of 15

1. Introduction

1.1 Overview

This is a non-proprietary Federal Information Processing Standard (FIPS) 140-2 Security Policy
for ASIGRA Inc.'s AsigraEncModule. The AsigraEncModule (“Cryptographic Module” or “Module”)
is a cryptographic library for C++ language users providing various hash algorithms, encryption
algorithms and random number generation. This Security Policy specifies the rules under the
AsigraEncModule must operate. These security rules are derived from the requirements of FIPS 140-2
and related documents

1.2 Purpose

This Security Policy is a required document as part of the FIPS 140-2 submission. The FIPS
140-2 validation submission is composed of the following parts:

– Security Policy

– Crypto Officer and User Guide

– Design Assurance Document

– API Reference

– Source Code

1.3 Security level

The Cryptographic Module meets the following security level (according to the FIPS 140-2
security requirements sections):

Section No. Area Title Level

1 Cryptographic Module Specification 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles, Services, and Authentication 1

4 Finite State Model 1

5 Physical Security N/A

6 Operational Environment 1

7 Cryptographic Key Management 1

8 Electromagnetic Interference/Electromagnetic Compatibility 1

9 Self-Tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks N/A

Table 1: Security Level

May 18, 2016 Page 4 of 15

2. Cryptographic Module Specification
The AsigraEncModule is a multi-chip standalone software cryptographic module that operates

with the following components:

– a commercially available general-purpose computer hardware

– a commercially available Operating System (OS) that runs on the computer hardware

As a software cryptographic module, the AsigraEncModule provides access to cryptographic
services by the usage of “functions” that are invoked by module users. Invoking the functions of the
module represents the mechanism through which users gain access to the cryptographic services
offered by the module. As such, the term “function” and “service” are used interchangeably throughout
this document.

2.1 Software Environment

The module is offered as a dynamic library for the following Operating Systems:

– Linux, running on a x86-compatible CPU

– Linux, running on a x64-compatible CPU

– Microsoft Windows, running on a x86-compatible CPU

– Microsoft Windows, running on a x64-compatible CPU

– Macintosh OS X, running on a x86-compatible CPU

2.3 Master component list

The AsigraEncModule encryption library is a software-only module. The software part is
composed of one item: the dynamic library containing the module. Depending on the operating system,
this is named:

– asigraencmodule.dll on Windows (32 or 64 bit versions)

– libasigraencmodule.so on Linux (32 or 64 bit versions)

– libasigraencmodule.dylib on Mac OS X

The AsigraEncModule encryption library is used on a general purpose computer. The actual
hardware and O/S builds for these general purpose computers vary. The library was specifically tested
during the FIPS 140-2 validation on the following hardware/software environments:

O/S Type Environment

Windows 32-bit Microsoft Windows Server 2003, Enterprise Edition, 5.2.3790 Service Pack 2, Build 3790
2GHz Intel CPU, 1GB RAM

Windows 64-bit Microsoft Windows Server 2003 x64, Standard Edition, 5.2.3790, Service Pack 1, Build 3790
Dual-Core Intel Xeon at 2.4 GHz, 3 GB RAM

Linux 32-bit RedHat Enterprise Linux 5, Update 6
3GHz Intel P4 CPU, 2GB RAM

May 18, 2016 Page 5 of 15

O/S Type Environment

Linux 64-bit RedHat Enterprise Linux 5 x64, Update 6,
2 x Quad Core Intel Xeon at 2.5 GHz, 8GB RAM

Mac OS X Mac OS X, 10.5
2 x Dual-Core Intel Xeon at 2GHz, 2 GB RAM

Table 2: Hardware/Software environment

2.4 Module Interfaces

The Cryptographic Module's physical interfaces consist of the keyboard, mouse, monitor, CD-
ROM drive, floppy drive, serial ports, COM ports, USB ports, network adapters and any other I/O
hardware components part for the general-purpose computer hardware on which the module operates.
However, the module sends/receives data entirely through the underlying logical interface, a C++ API
documented in the Cryptographic Module API Reference.

The following table represents the a mapping between the logical and the physical interfaces of
the cryptographic module:

Logical Interface Physical Interface Mapping (Standard PC) Cryptographic Module Mapping (API)

Data Input Interface Keyboard/mouse/CD-ROM/DVD-ROM, floppy
drive, serial/parallel/USB/network ports

Arguments for a function that specify
module data input

Data Output Interface Floppy drive, monitor, serial / parallel / USB /
network ports

Arguments for a function that specify
where the function results are stored

Control Input Interface Keyboard/mouse/CD-ROM/DVD-ROM, floppy
drive, serial/parallel/USB/network ports

API functions are used to initialize the
module and control the operation of the
module

Status Output Interface Floppy drive, monitor, serial / parallel / USB /
network ports

Return values of the function calls and
arguments for that specify where to
store error information.

Power Interface Power switch Not Applicable

Table 3: Mapping between the logical and the physical interfaces of the cryptographic module

May 18, 2016 Page 6 of 15

2.5 Module Block Diagram

The following block diagram show the physical hardware ports for the data input, control input,
data output and status output.

Figure 1: Physical hardware ports

The following block diagram displays the logical interface to the Cryptographic Module,
illustrating the use of the API for data input/output and control input/status output.

Figure 2: Logical interface

As a software cryptographic module, the cryptographic boundary for the module on a general
purpose computer is the computer's case, which physically encloses the complete set of hardware and
software.

System Bus

CPU RAM Power
Supply

LegendLegend

Physical
Boundary

Data Flow

External
Power
Source

I/O Ports & Controllers

Keyboard
Mouse
Network Port(s)
Parallel Port(s)
....

AsigraEncModule

LegendLegend

Logical
Boundary

Data Flow

Application Program

API

Operating System

May 18, 2016 Page 7 of 15

2.6 Approved mode of operation

The module implements and provides access to FIPS-approved cryptographic functions. As a
result, the module operates in an approved mode of operation as long as only the FIPS approved
cryptographic functions are used. This “FIPS-mode” is the only mode of operation for the module.

3. Roles, Services and Authentication

3.1 Roles and Services

The User and Crypto Officer roles are implicitly assumed by the entity that can access the
services implemented by the Cryptographic Module. The following table defines authorized services
that are available to each user role:

Role Authorized Services

Crypto User • Library services as defined below

Crypto Officer • Library services as defined below
• Library installation

Table 4: Role and Authorized Services

The following is a list of services that are provided to the above roles (named “Library
services” in the table above):

– Library initialization by initializing a consistency check

– Status checking (library version retrieval, checking the success/failure of the last
consistency check)

– Cryptographic services offered by the library: encryption, message digest, random
number generation, zeroize and self-test

As a library and as allowed by FIPS 140-2 Level 1 requirements, the module does not support
user identification or authentication for these roles.

3.2 Authentication

The Cryptographic Module does not provide identification or authentication mechanisms that
would distinguish between Crypto user and Crypto Officer roles. The roles are implicitly assumed by
the services that are accessed and can be differentiated by assigning installation and configuration tasks
to the Crypto Officer.

3.3 Services

The Cryptographic Module offers both approved and non-approved cryptographic algorithms.
The following is a list of cryptographic algorithms provided:

May 18, 2016 Page 8 of 15

Cryptographic
Service

Algorithm Standard NIST
Certificate

Implementation Function &
Returned Interface

Approved cryptographic algorithms:

Symmetric Cipher AES – CBC and ECB –
with 128, 192 or 256 bit
keys

FIPS 197 #968 Encryptor_AES128 -> IEncDataEncryptor
Decryptor_AES128 -> IEncDataDecryptor

Encryptor_AES192 -> IEncDataEncryptor
Decryptor_AES192 -> IEncDataDecryptor

Encryptor_AES256 -> IEncDataEncryptor
Decryptor_AES256 -> IEncDataDecryptor

Message Digest SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

FIPS 180-2,
including
Change
Notice 1

#938 Digest_SHA1 -> IDataDigester
Digest_SHA224 -> IDataDigester
Digest_SHA256 -> IDataDigester
Digest_SHA384 -> IDataDigester
Digest_SHA512 -> IDataDigester

HMAC-SHA-256 FIPS 198 #541 Digest_SHA_HMAC -> IDataDigester

Non-approved cryptographic algorithm:

Random Number
Generation

ANSI X9.31 Appendix A,
2.4 Using AES (non-
approved as per SP800-
131A rev. 1 starting 2016)

ANSI X9.31 #546
(Historical)

RNG_AnsiX931_AES ->
IencRandomDataGenerator

Note: random numbers generated from this
service cannot be used to generate
cryptographic keys.

Table 5: Cryptographic algorithms

 In addition to the cryptographic services, the module provides the following additional control
& status checking functionality (functions directly callable by an operator):

Provided service Implementation Function Keys & CSP Access
Type

Role(s)

Library status checking (“Show
status” functionality of the module)

GetVersion -> check library version
SelfTestStatusOK -> check for self-test errors

No CSP Not Applicable Crypto Officer
Crypto User

Self-test initiation (for initial and
on-demand self-test)

PerformSelfTest -> initiate a self-test of the library HMAC Key R/E Crypto Officer
Crypto User

Zeroize Release -> clears the CSP and releases
 allocated memory

All keys except
HMAC

W Crypto Officer
Crypto User

Table 6: Additional control & status checking functionality

The following table identifies CSPs and type of available access for the supported services. As
per section 3.1, the cryptographic module does not support user identification or authorization for user
roles. As such, the same level of access to cryptographic services is granted to all user roles:

Service Cryptographic Keys
and CSPs

Types of Access (e.g. RWE) Role(s)

May 18, 2016 Page 9 of 15

AES Encryption and
Decryption

Secret Key RW Crypto Officer
Crypto User

SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512 Hashing

Checksum RW Crypto Officer
Crypto User

HMAC-SHA-256 Secret key and Checksum RW Crypto Officer
Crypto User

Library Installation HMAC Key W Crypto Officer

Table 7: CSPs and type of available access for the supported services

4. Finite State Model
The diagram below represents the finite state model of the Cryptographic Module. The Module

can be only in one state at a time. Transitions between states are a result of various software events or
actions. Operations specific to the Crypto Officer are outside the scope of this state model.

Not Loaded O/S Library
Load Failure

Loaded

Initialized

Self-Test
Error

Application
Stop

Self Test Start KAT Validate

Library HMAC
Validate

Crypto-Obj
Created

Perform Crypto
Function

11

33

22

44

55

66 77 88

99
1010

1111 1212

1313 1414
1515

1616

1717

May 18, 2016 Page 10 of 15

Figure 3: The final state model of the Cryptographic Module

4.1 State Description

State Description

Not Loaded The module is in this state when it has not been loaded into memory.
This state corresponds to the “Power Off” state defined in FIPS 140-2

Loaded In this state, the module has been loaded into memory however the
power-on self-test has not been performed. The module services are not
available at this point until the module self-test is executed.

O/S Library Load
Failure

The state represents a failure to load the module in memory, such as
“file not found” or “incompatible library type”.

Self Test Start The Module Entered a self-testing mode. This mode is entered either
after the library loading (mandatory initial self-test) or when the user
performs an “on-demand self test”.

KAT Validate The Module is performing Known Answer Tests for the provided
cryptographic functions. A known answer test will be performed for
every cryptographic algorithm implemented by the module (AES – all
key lengths, SHA – all sizes, SHA-1-HMAC)

Library HMAC Validate The Module will compute library-module HMAC-checksum for the
entire dynamic library code (excluding the compiled-in HMAC value
and compile-specific timestamps and checksums). This HMAC covers
the data and executable code for all the module components.

Initialized This state corresponds to the “Power On” state defined in FIPS 140-2.
This state is entered to after the power-on self-test has been completed
successfully. The module cryptographic services can be used while the
module is in this state.

Self-Test Error The Module enters this state if at one of the self-test checks has failed.
Once the module entered this state, the cryptographic services provided
by the module are not available anymore and any attempts to use a
cryptographic services offered by the module will result in an error.

Application Stop The module enters the Application Stop state when the application
program using the module terminates either normally or abnormally.

Crypto-Obj Created A cryptographic object of the library is created and the corresponding
CSP has been initialized and resides in the Cryptographic Module
memory.

Perform Crypto
Function

A cryptographic function is applied using one of the the cryptographic
objects created using the library API.

Table 8: State description

May 18, 2016 Page 11 of 15

4.2 State Transition Description
Transition # Description

1 Transition from the “Not Loaded” state into the “Load Error” state as a result of a O/S
Specific library load failure. O/S provides failure code and message.

2 Application Termination as a result of a Cryptographic Library Load Failure. The O/S
will automatically terminate an application linked with the cryptographic library in case
the cryptographic library fails to load.

3 Transition into the “Loaded” State as a result of the O/S successfully loading the
cryptographic module in memory.

4 Application termination after the Cryptographic Library has been loaded,without the
application using any cryptographic functions offered by the module. This may occur if
the O/S starts the application (module is successfully loaded) however the application
needs to terminate before needing to perform cryptographic functions (e.g. Detecting
application-specific configuration errors)

5 Initiation of a self-test of the library after the cryptographic library has been loaded into
memory. If an application needs to use the cryptographic functionality offered by the
library, this step has to be performed. Attempting to utilize cryptographic functionality
offered by the library before initiating a self-test will result in an error being returned to
the application.

6 Transition to the Known-Answer-Test phase. The KAT is the first phase of the
application self-test functionality

7 Transition into the Self-Test error state as a result of any one of the Known Answer
Tests failing.

8 Transition to the Application Stop phase after the module entered a self-test error state.
This is the only possible transition once the module entered a self-test error phase. Any
attempts to use any cryptographic functions in the module while the module is in a
“self-test error” state will result in an error being returned to the application

9 Transition to the “self-test start” state as a result of the user application requesting an
“on-demand self-test” of the cryptographic library while the library is in an initialized
state.

10 Transition to the “Library HMAC Validation” as a result of the successful validation of
the Known answer tests in the library.

11 Transition to the “Initialized” state as a result of the successful validation of the library
data HMAC.

12 Transition to the “self-test error” state as a result of a failure to match the library data
HMAC of the application code and data with the expected compiled-in value.

13 Transition to the “Initialized” state by the destruction of a Crypto object. The
Destruction of a crypto object will perform a in-memory overwrite of the CSP with 0.

May 18, 2016 Page 12 of 15

Transition # Description

14 Creation of a cryptographic object by providing CSP data to the cryptographic module.

15 Stopping the application when the module is in an “Initialized” State.

16 Requesting the cryptographic module to perform a cryptographic function using a
specified cryptographic object

17 The application completing the cryptographic request and returning the result (either an
error-code in case of invalid parameters or state or the result of the cryptographic
function).

Table 9: State transition description

4.3 Cryptographic function input, output and control

The library provides access to cryptographic functionality by using a C++ object-based
interface. Each function exported by the library takes as parameters input data (e.g. CSP) and
destination buffers for output results like encryption/hash output buffers and error texts. Functions
returning object pointers will return NULL on error or a valid object pointer on success. Functions
returning boolean values return true on success and false on failure.

In case a self-test operation fails, any subsequent function calls will return a “failure” result
code (i.e. “false”) and the error text will be the same as the error text returned by the self-test function.

Figure 4: Cryptographic function input, output and control

Below is a table describing data inputs & outputs for the cryptographic functionality offered by
the library:

Type of function Example Functions Input Output Status information

Crypto-object
creation

Encryptor_AES128
Decryptor_AES192
Digest_SHA1
...

CSP (e.g. Key, IV)
buffer for error text pointer

Pointer to crypto-object
pointer to error text

Return code:
 NULL on failure
 valid object pointer on
 success

Crypt-function
call

EncryptECB
DecryptCBC

Input data buffer
pointer to output buffer

Data in output buffer
pointer to error text

Return code:
 true on success

Function call

Data Input
Output data:
 - fill output buffer (on success)
 - set error buffer (on failure)
 - function-specific return for
 informational functions (e.g.
 block sizes)

Data Output
Input data:
 - CSP
 - buffer for output
 - buffer for err info

Operation status code:
 - part of the return code
 - true/false success value or
 NULL/non-null result

Operation request:
 - API-naming based
 - defines function
 or functionallity
 invoked

May 18, 2016 Page 13 of 15

AppendDigestData
GetDigest
...

buffer for error text pointer false on failure

Self-Test PerformSelfTest buffer for error text pointer Pointer to error text Return code:
 true on self-test ok
 false on failure

Status
information

CheckVersion
SelfTestStatusOK
Release
GetBlockSize

Described in the Api
Reference

Described in the Api
Reference

Described in the Api
Reference

Table 10: Data inputs & outputs for the cryptographic functionality

Note: “status information” functions refers to functions which do not perform FIPS-approved
cryptographic functions and are used for library status information or memory management. The
following list describes the purpose of each of these functions:

– CheckVersion returns the current version of the library as a string (no input required)

– SelfTestStatusOK returns the current library self-test status and in case of failure, the associated
failure description (as a pointer to an error string).

– Release will release the memory allocated by the library for the storage of some cryptographic
object

– GetBlockSize is an informational function about the block size of encryption objects created by
the library. This function cannot fail as the block size is fixed for any algorithm and simply
returns this fixed size.

5. Physical Security
The AsigraEncModule is a purely software module and thus physical security requirements do

not apply.

6. Cryptographic Key Management

6.1 Key Generation

The Cryptographic Module does not offer a FIPS-approved RNG for the purpose of generating
symmetric keys and random initialization vectors for encryption algorithms such as AES.

6.2 Key Entry and Output

The Cryptographic Module supports the importing of keys through its various API calls but not
the exporting of keys. The keys can be imported from the calling application. It is the responsibility of
the application to export keys from the physical cryptographic boundary.

May 18, 2016 Page 14 of 15

6.3 Key Storage

As a cryptographic library, the Cryptographic Module does not provide long-term cryptographic
key storage.

The module will perform short-term volatile (in memory) storage of the plain-text version of the
cryptographic keys for the duration of the cryptographic operation (encryption / decryption / HMAC).
The encryption keys are automatically zeroized when the “Release” function is called on the
cryptographic API objects.

7. Electromagnetic interference / electromagnetic compatibility
The AsigraEncModule is a purely software module and thus electromagnetic interference /

electromagnetic compatibility do not apply.

The platforms that host the module are expected to meet the EMI/EMC for FIPS 140-2 security
levels 1 and 2.

8. Self-Tests
The Cryptographic Module performs a number of power-up self-test to ensure proper operation

of the Module. The tests include in-memory integrity tests, known answer tests and conditional tests.
No cryptographic service is available until the power-up self-test has been completed successfully.

On-Demand self-tests can be invoked by the Crypto Officer or user by invoking the
“PerformSelfTest” function. The function is described in the Api Reference.

In case the integrity test fails or one of the known answer tests fails, the Cryptographic Module
enters in the “Self-Test Error” state and no cryptographic functionality is made available.

8.1 Known answer tests

The Cryptographic Module performs the following known answer tests:

Algorithm Known Answer Test

AES Encryption and Decryption using 128, 192 and 256 keys

SHA SHA-1, SHA-224, SHA-256, SHA-384, SHA-256 checksum
calculation

HMAC HMAC-SHA-256 checksum calculation
Table 11: Known-Answer-Test

8.2 Integrity test

The software will perform a library integrity test using a HMAC-SHA-256 test of the entire
library module as it is stored on disk. This computed HMAC value is compared with a compiled-in
HMAC in order to verify the module integrity.

May 18, 2016 Page 15 of 15

The HMAC is computed over the entire library as it is stored on disk, excluding compile-
specific parts and the compiled-in HMAC value itself. The HMAC computation is done over the entire
library (i.e. “asigraencmodule.so”, “asigraencmodule.dylib” or “asigraencmodule.dll”) and will cover
the following items:

– All executable code implemented by the module (covering all cryptographic functions and
self-test functionality of the module, including the HMAC computation itself)

– All static data of the module, including initialization vectors and cryptographic functions
initialization data (covering all cryptographic functions and self-test functionality of the
module, with the only item excluded being the 256-bit HMAC value itself)

– Other operating-specific data like dynamic library headers and linking information (with the
exception of Win32 PE header timestamps & checksums and Mach-O timestamps &
checksums, which are compile-time specific)

Note that the HMAC key used for the integrity self test is never zeroized. The rationale for not
zerozing the HMAC key is that this would cause the module to not pass the self test.

9. Mitigation of other attacks
The Cryptographic Module does not provide security mechanisms to defend against attacks

beyond those required by FIPS 140-2 Level 1 for monitoring the integrity of the Module

10. References
The following documents were used to support the validation of the AsigraEncModule library:

[1] FIPS PUB 140-2, Security Requirements for Cryptographic Modules, 2001 May 25

[2] National Institute of Standards and Technology, NIST-Recommended Random Number
Generator Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES
Algorithms, 2005 January 31

[3] FIPS PUB 197, Advanced Encryption Standard (AES), 2001 November 26

[4] FIPS PUB 180-2 (+ Change Notice to include SHA-224), Secure Hash Standard (SHS) , 2002
August 1

[5] FIPS PUB 198, The Keyed-Hash Message Authentication Code (HMAC),2002 March 6

[7] NIST Special Publication 800-38A, Recommendation for Block Cipher Modes of Operation
Methods and Techniques, 2001 December

Table 12: References

	1. Introduction
	1.1 Overview
	1.2 Purpose
	1.3 Security level

	2. Cryptographic Module Specification
	2.1 Software Environment
	2.3 Master component list
	2.4 Module Interfaces
	2.5 Module Block Diagram
	2.6 Approved mode of operation

	3. Roles, Services and Authentication
	3.1 Roles and Services
	3.2 Authentication
	3.3 Services

	4. Finite State Model
	4.1 State Description
	4.2 State Transition Description
	4.3 Cryptographic function input, output and control

	5. Physical Security
	6. Cryptographic Key Management
	6.1 Key Generation
	6.2 Key Entry and Output
	6.3 Key Storage

	7. Electromagnetic interference / electromagnetic compatibility
	8. Self-Tests
	8.1 Known answer tests
	8.2 Integrity test

	9. Mitigation of other attacks
	10. References

